Light Chain (AL) Amyloidosis
Diagnosis & Management

Michael Rosenzweig, MD
How The Experts Treat
Hematologic Malignancies
Disclosures

- Speakers Bureau:
 - Celgene
 - Akcea
Amyloidosis: Lecture Outline

- Definition & Diagnosis
 - when to suspect and how to confirm
- Classification: subtype impacts treatment
- Amyloid related organ disease
 - Involvement & Response Criteria
- Treatment & Management
 - Anti-plasma cell
 - Anti-amyloid
- hTTR Amyloidosis
Amyloidosis: Protein Conformation/folding Disorder

- Precursor proteins misfold and aggregate to form β-Strands
- Predominant anti-parallel arrangement of β-Strands → β-sheets → Fibrils
- Fibril structure allows for Congo red staining and apple green birefringence
 - Amyloid fibrils with non-fibrillar constituents (GAGs and SAP) deposit in organs and tissues (extracellular deposition)
 - Progressively interfere with organ structure/ function
- Dozens proteins known to form amyloid

Classification of Amyloidosis

<table>
<thead>
<tr>
<th>Type of amyloidosis</th>
<th>Precursor protein</th>
<th>Clinical Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL (primary)</td>
<td>κ or λ light chain</td>
<td>Systemic or localized</td>
</tr>
<tr>
<td>AH</td>
<td>Ig heavy chain</td>
<td>Systemic or localized</td>
</tr>
<tr>
<td>AA (secondary)</td>
<td>Serum amyloid A protein</td>
<td>Renal (most common) Chronic inflammatory conditions, hereditary in familial periodic fever</td>
</tr>
<tr>
<td>ATTR</td>
<td>Mutant TTR</td>
<td>Peripheral/autonomic neuropathy, CMY, vitreous opacities</td>
</tr>
<tr>
<td>Mutated TTR (familial) Wild-type (senile)</td>
<td>Normal TTR</td>
<td>Restrictive CMY; carpel tunnel syndrome</td>
</tr>
<tr>
<td>LECT2</td>
<td>Leukocyte chemotactic factor 2</td>
<td>Renal (acquired)</td>
</tr>
<tr>
<td>Aβ₂M</td>
<td>B₂-microglobulin</td>
<td>Carpel Tunnel, arthropathy</td>
</tr>
<tr>
<td>Other Hereditary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrinogen alpha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1 Apolipoprotein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelsolin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal (most common)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal (most common)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranial neuropathy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When to Suspect Amyloidosis

• Any patient and unexplained...
 – Shortness of breath
 – Nephrotic syndrome
 – Restrictive cardiomyopathy
 – **Fatigue** (Most Common Presenting Symptom)
 • Merlini et al. Amyloidosis Center
 – Autonomic or sensory/motor neuropathy
 – GI dysmotility
 – Hepatomegaly or increased alkaline phosphatase
 – Unintentional Weight loss

• Especially in the setting monoclonal gammopathy
Diagnosis: Tissue is the Issue

• Early diagnosis is critical

• Fat pad Aspiration (positive in 70%)

• Biopsy involved organ
 - Renal
 - Endomyocardium
 - Liver
 - Endoscopic GI

• BM + Fat Pad will diagnosis 85% of AL cases
 - Gertz et al. Leuk Lymphoma 2010

Kidney biopsy
Endomyocardial biopsy
Amyloid 2007;14:179
NEJM 2002;346:1786
Fat Pad Aspiration

1. Two areas 7-10cm lateral of the umbilicus are cleaned in a sterile fashion
2. Anesthetize both areas using a 5 ml syringe, a 22 gauge needle and 1% lidocaine
3. Use a 16 Gauge needle and 10cc syringe
4. Insert needle medially toward the umbilicus parallel to the table surface
5. Move needle in a semi circular fashion while applying continuous negative pressure
6. Withdraw needle from skin with continued negative pressure
Fat Pad Aspirate

BU Video: https://www.youtube.com/watch?v=tctYTmxd9gQ

gross tissue

Congo red stain

apple green birefringence
Subtyping Amyloid: Type Effects Treatment!

- Determine the precursor protein
- Tissue-based Subtyping
 - Immunohistochemistry (unreliable in AL)
 - Immunoelectron microscopy (Immunogold)
 - Immunofluorescence
 - Liquid chromatography- tandem mass spectrometry
 - Gold Standard
- MGUS: common pre-malignant condition
 - 3.2% of the population over 50

Amyloid Subtype: Must be known!
Laser Microdissection Mass Spectrometry

Vrana et al. Blood 2009
AL Amyloidosis: Light Chain Amyloidosis

• Most common form of systemic amyloidosis
 - Localized amyloidosis: light chain
• Two part disease:
 – Clonal B cell disorder
 • 98% plasma cell dyscrasias
 • 2% lymphomas, most common IgM
 – Amyloid related organ disease
• Rare disease: Incidence of 5-12 persons/million/year

Br J Haematol 2004;124:309
JNCCN 2007;5:179
The Amyloidogenic B-cell Clone

- Small but dangerous
 - Plasma cell burden often < 10%
- Similar phenotype to MM but not exactly?
 - BCMA and CS1 expression
 » Rosenzweig et al. Cytotherapy 2017
- FISH
 - T(11;14): most common observed abnormality
 • 40-60% of patients
 - Gain of 1q21: 25% of patients
AL: Plasma Cell Evaluation

• Bone marrow aspirate and biopsy
 – CD 138+ plasma cells
 – Kappa/lambda IHC staining
 – Congo red stain (+ 60% of BMs)
 - Mostly λ restriction: κ to λ ratio ~1:4

• Serum Protein Electrophoresis (SPEP)
 - M-spike uncommon
 - 75% by S-IF,

• 24 hour urine and UPEP
 - 85% by U-IF

• Serum Free Light Chains
 - > 95% by serum free light chains
Serum Free Light Chain (FLC) assay

FLC assay in AL:
- A biomarker of disease (SPEP and UPEP often negative)
- Measure of response
- Predictor of disease status

Kumar et al. JCO 2012
Dispenzieri et al. Leukemia 2009.
Plasma Cell Dyscrasias

MGUS

<3 g M spike
<10% PC

AND

Smoldering MM

≥3 g M spike

or

≥10% PC

No anemia, bone lesions
normal calcium and
kidney function

Active MM

≥10% PC

≥3 g M spike

AND

Anemia, bone lesions,
high calcium or
abnormal kidney function

Light Chain Amyloidosis + characteristic end organ damage

AL Amyloidosis

Kyle RA. NEJM 2002
Munshi N. IMWG 2011
Pathogenesis and presentation of AL amyloidosis

©2014 by Ferrata Storti Foundation
Systemic Amyloidosis

Soft Tissue Involvement (22%)
- Periorbital Ecchymosis
- Macroglossia
- Pathognomonic: AL

Cardiac Involvement (45%)
- Heart Wall Thickening
- Congestive heart failure
- Constrictive cardiomyopathy

Renal Involvement (84%)
- Glomerulus deposition
- Nephrotic range proteinuria
- Peripheral Edema

GI Involvement (20%)
- Occult/Overt bleeding
- Impaired motility
- Hepatic infiltration
- Malabsorption

Neuropathy (36%)
- Sensory (10%): Pain, Numbness, Tingling
- Autonomic (26%): Orthostasis, Gastric dysmotility

Bleeding Diathesis (5%)
- Capillary fragility
- Factor X deficiency
Organ Involvement: Consensus Opinion

- **Objective criteria**
 - **Kidney** > 500mg/day proteinuria
 - **Heart** Mean wall thickness > 12 mm; (EKG; NT-Pro BNP, Troponin I, T)
 - **Liver/GI** Liver span > 15 cm (absence of CHF); Alk phos > 1.5 x ULN
 - **PNS** Orthostasis; symmetric sensorimotor neuropathy; impaired GI motility;

Revised Staging System

- 758 patients
- Assigned points: 0-3
 - cTpnT ≥ 0.025 ng/mL
 - NT-Pro BNP ≥ 1800 pg/mL
 - FLC- diff ≥ 18 mg/dL
- Stage I-IV
 - Proportion patients/ Median OS
 - I: 189 (25%) / 94.1 months
 - II: 206 (27%) / 40.3 months
 - III: 186 (25%) / 14.0 months
 - IIIB: NT-Pro BNP > 8500 / 3 months
 - IV: 177 (23%) / 5.8 months (P<0.001)

Kumar et al. JCO 2012
Renal Amyloidosis

- Renal involvement occurs in 70-80% of AL
 - Significant morbidity; impacts treatment options
 - Less impact on OS compared to heart
 - Renal survival is impacted
- Factors to predict renal survival
 - Proteinuria
 - Estimated GFR
Renal Staging in AL

I: Proteinuria < 5g/24h AND eGFR > 50 mL/min
II: Either proteinuria > 5g/24 OR eGFR < 50 mL/min
III: Both proteinuria > 5g/24 h AND eGFR < 50 mL/min

Renal involvement and response matter!
Treatment of AL amyloidosis

• Anti-plasma cell therapy
 - Adapted from multiple myeloma
 - Caution: toxicity not trivial

• Goals:
 - Eradicate the pathologic plasma cell
 - Eliminate amyloidogenic free light chain
 - Prevent further amyloid deposition
 - Allow damaged organs to heal

• Follow hematologic markers for response
 - SFLC, SPEP, Quantitative immunoglobulins

• Clinical trials

NO FDA APPROVED DRUGS AVAILABLE
Response Criteria

Hematologic Response

<table>
<thead>
<tr>
<th>Hematologic Response</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>Normal SFLC ratio with negative Serum and urine IFE</td>
</tr>
<tr>
<td>Very Good Partial Response (VGPR)</td>
<td>dFLC < 4.0 mg/dL</td>
</tr>
<tr>
<td>PR</td>
<td>Reduction in dFLC > 50%</td>
</tr>
<tr>
<td>No Response</td>
<td>< 50% reduction in dFLC</td>
</tr>
</tbody>
</table>

Organ Response*

<table>
<thead>
<tr>
<th>Organ</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>NT-ProBNP response (> 30% and > 300 ng/L decrease in patients with baseline ≥ 650 ng/L) or NYHA response (≥ 2 class decrease in subjects with baseline NYHA class 3 or 4)</td>
</tr>
<tr>
<td>Kidney</td>
<td>50% decrease (at least 0.5 g/day) of 24 h urine protein (must be > 0.5 g/day pretreatment) Creatinine and creatinine clearance must not worsen by 25% over baseline.</td>
</tr>
<tr>
<td>Liver</td>
<td>50% decrease in abnormal alkaline phosphatase. Decrease in liver size radiographically by at least 2 cm</td>
</tr>
<tr>
<td>PNS</td>
<td>Improvement in EMG nerve conduction velocity</td>
</tr>
</tbody>
</table>

*May take 3-12 months
AL Treatment: Historical Perspective

- **1978**: SCT Phase II (N=25)
- **1996**: MPC vs C Phase III
- **1998**: SCT + MP Phase II
- **2002**: BNP Troponin
- **2004**: MDex vs SCT Phase III (N=100)
- **2007**: SCT + TD Phase II N=45
- **2011**: Bortez Phase I (N=70)
- **2014**: Ixazomib Phase III
- **2016**: Carfilzomib Phase I/II
- **2017**: Daratumumab
 - NT Pro-BNP Validated as a biomarker

1971: MPE vs MPC vs C Phase III (N=220)

1991: Case Studies MP

1997: Fibrils = FLC

2002: 2005 Criteria

2004: Thalidomide Phase 1

2005: CPHPC + Anti SAP (mice)

2009: LMD/MS

2012: CyBorD
 - Clinical Research Guidelines
 - SCT + BD
 - Revised Mayo Staging

2015: Anti-SAP Phase I

2017: CyBorD ± Dara

CS1 expression

Validated as a biomarker

- **FLC Assay**
- **Mdex Phase II (N=45)**

City of Hope
Newly diagnosed AL amyloidosis

Transplant eligible

- BM PC ≥ 10% or CRAB
 - Yes: Induction 2-4 cycles
 - No: Mel 200 HSCT

Not wanting transplant

Transplant ineligible

- Mel-Dex or CyBoR-D
 - ≥ Hematologic VGPR
Transplant or not to Transplant

Transplant Eligibility

• Physiologic Age ≤ 70
• ECOG Performance Score ≤ 2
• CrCl ≥ 30 ml/min* (unless on chronic dialysis)
• NYHA Class I/II

Transplant Ineligibility

• TnT ≥ 0.06 ng/ml
• NT-proBNP ≥ 5000
• More than 2 organs † significantly involved
• Poor integrity of GI mucosa

*Selected patients may become eligible for PBSCT with renal transplantation
† Organs considered for this criteria include liver, heart, kidney or autonomic nerve

Adapted: Mayo Clinic Msmart criteria: 2013
HDM / ASCT: Boston Experience

- 629 patients with AL amyloidosis underwent HDM/SCT 1994 – 2014

- Patient Characteristics
 - Median age 57 years (28-80)
 - Organ involvement
 - Cardiac 53%
 - ≥ 2 organ system 41%

- Conditioning regimens
 - Mel 200: 350 (55.6%)
 - Mel 100-140: 279 (44.3%)

- TRM: 7.4%: 47/629
 - 3.4% (10/292) since 2005

Sanchorawala et al. Blood, November 2015
HDM / ASCT: Boston Experience

Response Rate
- Hematologic CR at 6-12 months: 40.3%
 - Intention to treat 34.8%
 - Mel 200 mg/m2: 44.9%
 - Mel 100-140: 33.8%
 - (p= 0.009)

Relapse from CR
- 40 patients (18.2%) relapsed at a median of 3.97 years
 - 24 received Mel 200
 - 16 received Mel 100-140

Overall Survival with HDM/SCT 1994-2014
- Median OS: 7.63 years
- Long term survival > 20 years: 29%
Hematologic Response: Critical

Overall Survival
Hematologic CR vs Non-CR

Median OS

- Hem-CR: not reached
- Hem non-CR: 6.3 yrs

P <0.0001
Summary: High Dose Melphalan/ASCT

- Effective treatment approach for selected patients
 - Cardiac disease predicts survival
- Rapid suppression of light chain production
 - Suspends amyloid production
 - Arrests disease progression
 - Allows for organ improvement
 - Renal, cardiac, hepatic and quality of life
 - Extends survival
- TRM can be mitigated at experienced centers

Goal: Hematologic CR
<table>
<thead>
<tr>
<th>Approach</th>
<th>Number of Patients</th>
<th>Hematologic Response</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCT & Thal/dex consolidation (Cohen et al. 2007)</td>
<td>45 total 31 TD</td>
<td>21% CR</td>
<td>84% (2 yr OS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39% CR (1 yr)</td>
<td>TRM 4.4%</td>
</tr>
<tr>
<td>ASCT & BD consolidation (Landau et al. 2011)</td>
<td>40 total 23 BD</td>
<td>27% CR</td>
<td>82% (2 yr OS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58% CR (1 yr)</td>
<td>TRM 10%</td>
</tr>
<tr>
<td>Bor/Mel Conditioning (Sanhorawala et al. 2011)</td>
<td>10 (pilot study)</td>
<td>RR: 80% CR: 67%</td>
<td>100% (23 months)</td>
</tr>
<tr>
<td>BD induction + ASCT vs. ASCT (Huang et al. 2014)</td>
<td>56 28 each arm</td>
<td>BD +ASCT: 85.7% (1yr)</td>
<td>BD + ASCT: 95% (2 yr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR: 70% (2 yr)</td>
<td>ASCT: 69.4% (2 yr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASCT: 53.5% (1 yr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR: 35% (2 yr)</td>
<td></td>
</tr>
<tr>
<td>Bor induction & Bor/Mel conditioning (Sanhorawala et al. 2015.)</td>
<td>35 (30 went on to SCT)</td>
<td>100% (assessable pts) 77% (ITT)</td>
<td>TRM: 8.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63% CR 37%VGPR</td>
<td>Median PFS and OS not reached @ 36 months</td>
</tr>
</tbody>
</table>
Multicenter- RCT (29 centers in France)

- Newly diagnosed AL amyloidosis
- Ages 18-70 years
- ECOG ≤ 2

Two arm study:
Arm A: Oral melphalan (10mg/m²) + Dex (40mg), both days 1-4, monthly
Arm B: High Dose Melphalan (140 – 200mg/m²) + SCT

Jaccard A. et al. NEJM 2007
High dose melphalan + SCT versus oral melphalan + dexamethasone

100 Patients underwent randomization

50 Were assigned to melphalan plus dexamethasone
50 Were assigned to high-dose melphalan plus stem-cell rescue

5 Died
1 Could not tolerate treatment
1 Received high-dose melphalan

43 Received 3 or more cycles of melphalan plus dexamethasone
37 Received high-dose melphalan

10 Died
1 Declined treatment
2 Did not have sufficient stem cells

37 patients: HDM/SCT
10: MEL 140mg/m²
>65y
EF~30%
CrCl<30ml/m
AP>5x nml
27: MEL 200 mg/m²
9/37 died within first 100 days
TRM: 24%

Transplants performed at different 29 centers

Figure 1. Randomization, Treatment Assignments, and Receipt of Treatment.

Jaccard A. et al. NEJM 2007
Survival By Response & Treatment

Heme Response rates:
- Mel-Dex: 67%; CR: 61%
- HDM/SCT: 68%; CR: 47%

Median Survival
Mel/Dex: 56.9 months
HDM/SCT: 22.2 months
($P = 0.04$)

Median follow up:
Whole cohort: 24 months
Survivors: 36 months

Jaccard A et al. NEJM 2007
Letters to the editor:

- Study included poor patient selection for SCT
- Transplants performed at centers with little experience → ↑ TRM
- SCT should not be abandoned and remain standard in U.S.A.
Treatment Algorithm

Newly diagnosed AL amyloidosis

- Transplant eligible
 - BM PC ≥ 10%
 - or CRAB
 - Yes
 - Induction 2-4 cycles
 - Mel 200 HSCT
 - No
 - Transplant ineligible
 - Mel-Dex or CyBorD
 - ≥ Hematologic VGPR
 - Clinical Trial
Transplant ineligible patients: Off Trial

- Melphalan + Dexamethasone
- Dose: Mel 0.22 mg/kg + Dex 40mg D 1-4/28
 - Hematologic response rate of 67%, 33% CR
 - Organ responses 48%
 - Median OS 5.1 years
 - PFS: 3.85 years

– Further validated in comparison to transplant
Proteosome Inhibition: Bortezomib

<table>
<thead>
<tr>
<th>Regimen (Ref)</th>
<th>Study Type</th>
<th>Population</th>
<th>N (total/evaluable)</th>
<th>Heme RR% (CR)</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bor (Reece et al. Blood 2011)</td>
<td>phase I/II</td>
<td>relapsed</td>
<td>70</td>
<td>QW 69 (38) BIW 67 (24)</td>
<td>QW 94% (1 yr OS) TW: 84% (1 yr OS)</td>
</tr>
<tr>
<td>BorDex (Kastritis et al. J Clin Oncol. 2010)</td>
<td>series</td>
<td>new (19%), relapsed (81%)</td>
<td>94/93</td>
<td>72 (25)</td>
<td>76% (1 yr OS)</td>
</tr>
<tr>
<td>Mdex vs. BorMDex Kastritis et al. ASH abstract 2014</td>
<td>Randomized Phase III</td>
<td>new</td>
<td>35 Mdex 35 Bortex MDEX</td>
<td>58 76</td>
<td>Not reported</td>
</tr>
<tr>
<td>BorMDex Gasparetto et al. ASCO abstract 2010</td>
<td>phase II</td>
<td>new and relapsed</td>
<td>30/29</td>
<td>83 (45)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Cy/Bor/Dex Venner et al. Blood 2012</td>
<td>Retrospective series</td>
<td>new and relapsed</td>
<td>43</td>
<td>81.4 (41.9)</td>
<td>97% (2 year OS)</td>
</tr>
<tr>
<td>Cy/Bor/Dex Mikhael et al. Blood 2012</td>
<td>Retrospective series</td>
<td>new and relapsed</td>
<td>17</td>
<td>94 (71)</td>
<td>71% (median f/u 21 months)</td>
</tr>
</tbody>
</table>
Next Generation Proteosome Inhibitors

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Patients</th>
<th>Response</th>
<th>Survival</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Carfilzomib Phase I/II | N=28 | **Heme Responses:** ORR = 63%
6/8 PI-refractory patients
Dex added in 5 pts → 3 response upgrades
Organ Responses
5 (21%) (3 kidney, 1 GI, 1 liver) | Median PFS: 20 months
Median OS: Not reached | MTD 20/36
Fatigue: most common AE
10 Grade 3/4 cardiopulmonary toxicities |
| (Cohen et al. ASH 2016) | | | | |
| Ixazomib Phase I/II | N=27 | Heme Responses
ORR = 52%
PFS: 14.8 months
Organ Responses
56% (5 renal, 5 cardiac) | 1-year PFS: 60%
1-year OS: 85% | MTD: 4mg days
1, 8, 15 of 28
Grade 3 AE: Dyspnea, fatigue,
Subcutaneous tissue disorder |
| (Sanchorawala et al. Blood, 2017) | | | | |
Immunomodulatory Agents

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Number of Patients</th>
<th>Hematologic response % (CR%)</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thal/Dex Palladini et al.</td>
<td>31</td>
<td>48(19)</td>
<td>Not specified (60% grade 3 toxicity)</td>
</tr>
<tr>
<td>Len/Dex Sanchorawala et al.</td>
<td>34</td>
<td>67(29)</td>
<td>Not specified</td>
</tr>
<tr>
<td>Len/Dex Dispenzneri et al.</td>
<td>23</td>
<td>41</td>
<td>Not specified</td>
</tr>
<tr>
<td>Cyclo/Len/Dex Kumar et al</td>
<td>35</td>
<td>60 (11)</td>
<td>37.8 months</td>
</tr>
<tr>
<td>Mel/Len/Dex Moreau et al.</td>
<td>26</td>
<td>58</td>
<td>80.8% at 2 years</td>
</tr>
<tr>
<td>Pom/Dex Dispenzneri et al.</td>
<td>33</td>
<td>48 (3)</td>
<td>76% at 1 year</td>
</tr>
</tbody>
</table>
Immunotherapy: Daratumumab

- Fully human IgG kappa mAb targeting CD38
- Approved for MM
 - Combination therapy after 1 prior line
 - Monotherapy after 3 lines

Phase II Study: Safety and Tolerability of Daratumumab in Patients With Relapsed AL

Preliminary results: Dr. Sanchorawala ASH 2017
Daratumumab: Adverse Events

- No grade 3-4 infusion related reactions
- First 2 patients experience grade 1 nausea and vomiting with first infusion, resolved with antiemetics
 - No additional patients experienced N/V after introduction or pre-infusion ondansetron
 - No hospitalizations for infusion related or other adverse events.

Sanchorawala et al. ASH 2017
12 patients with relapsed AL > 1 prior line were treated

- Percent reduction in dFLC after 1 infusion:
 - 3 months (9 evaluable patients): 2CR, 6VGPR, 1PR
 - 6 months (4 evaluable patients): 2CR, 2VGPR

Sanchorawala et al. ASH 2017
Daratumumab Organ Responses

- **Cardiac Response**
 - >30% reduction in NT-proBNP
 - 1 month: 8% (n=1/12)
 - 3 months: 33% (n=3/9)
 - 6 months: 75% (n=3/4)

- **Renal Response**
 - >30% reduction in urine protein excretion
 - 1 month: 17% (n=1/6)
 - 3 months: 56% (n=5/9)
 - 6 months: 80% (n=4/5)

Sanchorawala et al. ASH 2017
Treatment Algorithm

Newly diagnosed AL amyloidosis

Transplant eligiblea

BM PC $\geq 10\%$ or CRAB

Induction 2-4 cyclesb

Yes

Mel 200 HSCTd

No

Not wanting transplant

Transplant ineligiblea

Mel-Dex or CyBoRdg

\geq Hematologic VGPRf

Yes

Observation

Lowe risk?

Yes

\geq PR

No

More chemotherapy

Clinical Trial

Msmart guidelines
Mayo Clin Proc 2015
Management for Relapsed Disease

Relapsed/Refractory AL Amyloidosis

- Daratumumab Based Treatment
- CyBorD
 - VD
 - Carfilzomib
 - Ixazomib
- Mel/Dex
- Pom/Dex

Clinical Trials
Supportive Measures

• Critical in caring for this complicated population
 – Cautious use of cardiac meds
 • Hypotension in setting of autonomic neuropathy
 – Close fluid management
 • Diuretics, albumin, compression hose
 – Attention to bleeding and factor X level
 • Factor IX complex, factor VIIa, PTCC
 – Neuropathy management
 • midodrine, gabapentin, pregabalin, duloxetine, metaclopramide
 – Nutritional support
Investigational Approaches

- CyBorD ± Daratumumab upfront
 - Phase III: study open for enrollment
- Elotuzumab: Anti-CS1 monoclonal antibody
 - Phase II Study: Elotuzumab, Lenalidomide and Dex +/- Cyclophosphamide
- Venetoclax: BCL-2 inhibitor
- Cellular therapies:
 - CAR-T
Anti-Amyloid Therapies in AL

• Protein Stabilizers
 – Doxycycline
 • Reduces fibril formation invitro
 – (Ward et al. NEJM 2011)
 • Improved outcomes clinically
 – Mayo Clinic, London Amyloid group

• Monoclonal Antibodies
 – Anti-SAP
 – 11-aF4
Amyloid protein focused treatment: Doxycycline

Doxycycline

- Can reduce fibril formation in vitro and in vivo
- Mayo Clinic Experience
 - 455 AL Rx ASCT 1996-2011
 - 106 (23%) received doxycycline post transplant
 - pen allergic

Overall Survival

Median OS: 161 months entire cohort
Doxycycline: Not reached
Others: 113 months
(P = 0.09)

Kumar et al. ASH abstracts 2012
Doxycycline: Improved Outcomes Early

Case series ASH 2015

- AL with cardiac involvement
 - 30: received doxycycline
 - 100 mg BID
 - 73 matched controls
 - Mayo stage II/III
- Heme Response w/chemo
 - 72% bortex, 23% thal, 5% Mel
 - Overall %CR/VGPR/PR:
 - 33/9/29
 - Doxy: 56/10/30
 - Non doxy: 35/8/37

Doxycycline with chemotherapy:
Significantly improved CR/VGPR & OS for stage II/IIIa

Wechalekar et al. ASH abstract 2015
11-1F4: Anti-Amyloid Monoclonal Antibody

- 11-F4 mAb (CAEL-101)
 - Developed to target exposed epitope following fibrillogenesis

Kappa Bence Jones protein isolated and used to develop Ab

Native

- Structure of soluble light chain in circulation → not reactive with 11-1F4 mAb (CAEL-101)

“Loop-Flip”

- Fibrillogenesis
- Surface adsorption

- Structure of light chain in fibril → reactive with 11-1F4 mAb (CAEL-101)
Phase 1a/b study of 11-1F4

- Study: Open-label, dose escalation study
 - Confirmed diagnosis of AL
 - Received prior systemic therapy
 - Not requiring anti-plasma cell therapy

- Objectives:
 - Determine maximum tolerated dose
 - Demonstrate reduction in amyloid burden by decrease of organomegaly and/or improved organ function
Phase 1a/b study of 11-1F4

- 27 patients enrolled; 24 evaluable for response
 - No Dose limiting toxicity up to an MTD of 500 mg/m²
- Best Cardiac Response:

Percent change in baseline NT-proBNP (%)

PROGRESSION
>30% and >300 pg/ml increase in NT-proBNP

STABLE
Baseline NT-proBNP ≥650 pg/ml

RESPONSE
>30% and >300 pg/ml decrease in NT-proBNP

12 patients evaluable for response
8 responders – 67%
4 stable

Median time to cardiac response - 3 weeks
Phase 1a/b study of 11-1F4

- **Best Renal Response:**

 - **STABLE**
 - No renal response or progression ≥ 25% decrease in GFR
 - **RESPONSE**
 - ≥ 30% decrease in proteinuria from baseline in the absence of renal progression

 - 10 patients evaluable for response
 - 5 responders – 50%
 - 5 stable

 Median time to renal response – 4 weeks

*24 hour urine protein measured at screening and Week 8 in Phase 1a and at screening and Weeks 5, 8 and 12 in Phase 1b
Organ responses independent of chemotherapy

- Patient with cardiac Lambda AL Amyloidosis
- 6 prior treatments with best Hematologic Response PR
- Prior to 11-1F4 mAb (CAEL-101) NO Organ response
hTTR Amyloidosis

- Due to autosomal dominant mutations encoding transthyretin (TTR)
- Mutations result in tetramer destabilization causing monomer aggregation into amyloid fibrils
- Accumulation of fibrils leads to organ dysfunction
Genetic Mutations Causing hATTR

- More than 120 TTR mutations identified
- Most common mutation worldwide is Val30Met
- V122I Most common in United States
 - 3.2 % frequency in US African Americans
New Treatments for hATTR

A: Normal transthyretin synthesis

- Wild-type TTR
- Mutant TTR
- Transcription
- Wild-type TTR mRNA
- Mutant TTR mRNA
- mRNA available for translation

Inotersen

- Wild-type TTR mRNA
- Mutant TTR mRNA
- Ribonuclease H
- Inotersen
- Target mRNA cleavage
- mRNA degradation
- mRNA available for translation greatly reduced

Patisiran

- Wild-type TTR mRNA
- Mutant TTR mRNA
- RNA-induced silencing complex
- Patisiran
- Target mRNA cleavage
- mRNA degradation
A mNIS+7

Least-Squares Mean Change from Baseline in mNIS+7

Weeks

Placebo
Inotersen

19.7
P<0.001

8.7
P<0.001

B Norfolk QOL-DN Score

Least-Squares Mean Change from Baseline in Norfolk QOL-DN Score

Weeks

Placebo
Inotersen

11.7
P<0.001

6.1
P=0.03
Summary

- Recognition of the signs and symptoms is critical for early diagnosis and improved outcomes.
- Disease assessment requires: amyloid subtyping, FLC testing and cardiac biomarker staging.
- Goal of therapy: eradicate the pathologic light chain.
- High dose melphalan + SCT still standard for now.
- Novel agents and approaches are evolving!
- Doxycycline may help stabilize light chains.
- Amyloid directed therapy results are encouraging.
- Supportive measures essential.
Acknowledgments:

• Amyloidosis Foundation:
 – David Seldin Memorial Research Award

• The Judy and Bernard Briskin Center for Multiple Myeloma (plasma cell disease) Research at City of Hope
Thank you!

Contact information
Email: mrosenzweig@coh.org
Phone: 626-256-4673 ext: 82405